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Abstract. The first author introduced a multivariate generating function that tracks
the distribution of ascents and descents on labeled plane binary trees and conjectured
that it was Schur positive. In this article, we give a sketch for a proof of the stronger
statement that the generating function restricted to trees with a fixed canopy is Schur
positive. Central to our approach is a weighted extension of a bijection of Préville-
Ratelle and Viennot relating pairs of paths and binary trees. We apply our results
to construct a Sn-action on the regions of the Linial arrangement using a bijection of
Bernardi. We then establish the γ-positivity for the distribution of right descents over
local binary search trees.
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1 Introduction

The study of permutation statistics is a classical theme in algebraic combinatorics. One
statistic which has shown up in surprisingly many areas of mathematics is the descent
statistic. In this article, we study a natural analogue of the descent statistic in the setting
of labeled plane binary trees. Our results demonstrate that much more remains to be
done in this regard, hints of which we provide in Section 5.

Given a positive integer n, let T `
n (Tn) denote the set of labeled (respectively unla-

belled) plane binary trees on n nodes. The labels on the nodes are drawn from the set
of positive integers P, allowing repeated labels. All trees referred to in this extended ab-
stract will be plane binary trees, where we distinguish left children from right children.
The ascent and descent statistics on labeled trees come in two flavors each, depending
on whether one compares the label of the parent node to the label of its right child or the
label of its left child. The first author, in the 1990s, initiated their study, and established a
functional equation for the generating function keeping track of these statistics over the
set of standard labeled trees. A standard labeled tree T P T `

n is a labeled tree with distinct
labels drawn from rns :“ t1, . . . , nu. Given a labeled tree T, let the weight of T be

wtpTq “ arascpTq
1 ardespTq

2 blascpTq
1 bldespTq

2 , (1.1)
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where lasc, ldes, rasc and rdes record the number of ascents and descents in the labeling
to the left and right, such that rasc and ldes are given by weak inequalities, while rdes
and lasc are given by strict inequalities. For example, a node labeled 2 with a right child
labeled 4 is considered a right ascent in the labeling. We will say that the edge between
these two nodes has weight a1. This given, consider the following generating function

B :“ Bpxq “
ÿ

ně1

ÿ

standard TPT `
n

wtpTq
xn

n!
. (1.2)

In unpublished work, the first author established that B satisfies an elegant functional
equation that sheds light on the symmetries present in B and generalizes the well-known
formula for the exponential generating function whose coefficients are the Eulerian poly-
nomials. Subsequently, proofs of this functional equation were also given by Kalikow [8]
and Drake [5]. Recent work involving the generating function B was inspired by the first
author’s observation that certain evaluations of B coincided with the number of regions
in well-known deformations of Coxeter arrangements. This viewpoint has been pursued
in [4, 6, 12], and a complete explanation has been offered by Bernardi [2].

Our primary object of study is a multivariate generalization of B. To this end, let
x “ tx1, x2, . . .u be a commuting set of indeterminates. To every T P T `

n , we associate a
monomial xT as follows: For a vertex v P T labeled i, let xv :“ xi, and let xT “

ś

vPT xv.
Consider the following power series in x with coefficients in the semiring Nra1, a2, b1, b2s

of polynomials on ta1, a2, b1, b2u with nonnegative integer coefficients.

S :“ Spxq “
ÿ

ně1

ÿ

TPT `
n

wtpTqxT. (1.3)

For n ě 1, let Gn :“ Gnpxq denote the degree n homogeneous summand of S only
summing over labeled trees on n nodes. Clearly, S “

ř

ně1 Gn. The first author es-
tablished a functional equation that revealed that S is a symmetric function in the xi
variables and then made the following conjecture based on empirical evidence.

Conjecture 1.1. S is Schur positive, meaning that S may be expressed as a sum of Schur func-
tions sλ with coefficients in Nra1, a2, b1, b2s.

This conjecture served as the primary motivation for the line of research outlined in
this extended abstract. In fact, we show a stronger fact; that S may be expressed as a
sum of Schur functions with coefficients in Nra1b2, a2b1, a1 ` b2, a2 ` b1s. This theorem
follows from a recursive formula satisfied by S, which is (1.4) below. In this extended
abstract, we introduce the algorithm ExtendedPG, which is a weighted extension of the
Préville-Ratelle-Viennot bijection between certain pairs of paths and binary trees and
describe how it can be used to decompose a labeled binary tree into subtrees in order to
prove Theorem 1.2.
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Theorem 1.2. Let rα denote the ribbon Schur function indexed by the composition α and let `pαq
denote the length of α. Then we have that

S “
ÿ

ně1

ÿ

α(n
pa1b2S` a1 ` b2q

n´`pαq
pa2b1S` a2 ` b1q

`pαq´1 rα. (1.4)

The canopy of a binary tree T P Tn is a certain word of length n´ 1 on the alphabet
tU, Du. See the end of Section 2 for its precise definition. We can then consider the
refinement of S only summing over labeled trees with a fixed canopy v,

Gn,v :“ Gn,vpxq “
ÿ

TPT `
n,v

wtpTqxT, (1.5)

where T `
n,v Ď T `

n is the set of labeled trees with canopy v. We will describe in Sec-
tion 3 how ExtendedPG also provides a proof that each Gn,v is Schur positive, which is a
refinement of Theorem 1.2.

Theorem 1.3. Fix n P P, and let v be a word of length n´ 1 in the alphabet tU, Du. Then Gn,v
is Schur positive.

Our proof also yields an explicit Schur positive expansion of Gn,v and consequently
yields a Schur positive expansion of Gn. We state the expansion of Gn in Corollary 1.4
but omit its proof. We also omit the expansion of Gn,v.

First, let us call a binary tree right-leaning if every node which has a left child also has
a right child. Let the set of right-leaning binary trees on n nodes be denoted by RT n.
Furthermore, let 9RT n denote the set of right-leaning trees on n nodes with some subset
of internal nodes marked. As a Corollary to Theorem 1.2, we have the following explicit
expansion for Gn in terms of right-leaning trees.

Corollary 1.4. Let Biu
p 9Tq (Bim

p 9Tq) denote the number of unmarked (respectively marked) in-
ternal nodes with two children, and let Uniu

p 9Tq (Unim
p 9Tq) denote the number of unmarked

(respectively marked) internal nodes with only one child (which has to be a right child given the
definition of 9RT n). Then Gn has the expansion given in (1.6).

Gn “
ÿ

9TP 9RT n

pa1b2q
Biup 9Tq

pa2b1q
Bimp 9Tq

pa1 ` b2q
Uniup 9Tq

pa2 ` b1q
Unimp 9Tq

ÿ

qcp 9Tqďδďpcp 9Tq

rδ, (1.6)

where qcp 9Tq and pcp 9Tq are certain compositions of n associated to a marked tree whose
definitions we omit from this extended abstract, and ď stands for the usual refinement
order on compositions. A fact worth noting about (1.6) is that the coefficient of rα for
every α ( n belongs to Nra1b2, a2b1, a1 ` b2, a2 ` b1s and furthermore, evaluates to the
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Catalan number 1
n`1

`2n
n
˘

when we set a1 “ a2 “ b1 “ b2 “ 1. In particular, the coefficients
of both rp1,1,...,1q and rpnq in (1.6) are the homogenized Narayana polynomials. Finally, the
cardinalities of the sets 9RT n are the large Schröder numbers.

We conclude the introduction with an outline of the article. In Section 2, we introduce
our main combinatorial objects and develop all the notation we need. In Section 3, we
state the algorithm ExtendedPG and describe how it can be used to prove Theorems 1.2
and 1.3. In Section 4, we discuss some consequences of our results with a special empha-
sis on local binary search trees. Finally, we conclude with further avenues in Section 5.

2 Combinatorial preliminaries

In this section, we will introduce the main combinatorial objects of this article. Let
P be the set of positive integers. Let P` be the set of nonempty words on P. Let
w “ w1w2 . . . wn P P` be a nonempty word. An inversion of w is a pair pi, jq with
1 ď i ă j ď n such that wi ą wj. The set of inversions of w is its inversion set. Let the
standardization of w be the unique permutation stdpwq P Sn whose inversion set is the
same as that of w. To the word w, we associate the monomial xw “ xw1 xw2 . . . xwn .

For notions related to the algebra of symmetric functions, denoted by Sym, that are
not made explicit here, we refer the reader to [11]. An important class of symmetric
functions for us is that of ribbon Schur functions, which are indexed by compositions. To
each composition α “ pα1, α2, . . . , αkq of n, we associate a subset of rn ´ 1s defined by
setpαq :“ tα1, α1` α2, . . . , α1` ¨ ¨ ¨ ` αk´1u Ă rn´ 1s. The ribbon Schur function associated
to α is defined as

rα :“ rαpxq “
ÿ

xi1 xi2 . . . xin , (2.1)

where the sum is over all n-tuples pi1, i2, . . . , inq of positive integers satisfying ij ą ij`1 if
and only if j P setpαq for 1 ď j ď n´ 1.

Note that the nodes of a binary tree can be categorized into leaf nodes, which are
nodes with no children, and internal nodes, which are nodes with at least one child. We
can classify the internal nodes further. We refer to an internal node with two children as
a bivalent node, and a node with only one child as a univalent node. Given a binary tree
T, the sets of univalent nodes and bivalent nodes will be denoted by BipTq and UnipTq
respectively.

We will work with two different types of orderings on the nodes of a binary tree T
derived from a traversal of its nodes. The preorder traversal is defined recursively, where
we first record the root, then traverse the right subtree of T in preorder, and finally the
left subtree of T in preorder. The inorder traversal is defined similarly, where we first
traverse the left subtree of T recursively in inorder, then record the root of T, and finally
traverse the right subtree of T in inorder. Given a node u in a labeled tree T, we refer
to the label on u as u`. The preorder and inorder traversals naturally associate a reading
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Figure 1: Determining the weight of a labeled edge.

word with a labeled tree, denoted prepTq and inpTq, respectively. Breaking prepTq at the
leaf nodes allows us to naturally associate a composition cpTq to T.

To a plane binary tree T P Tn we can associate a word of length n´ 1 on the alphabet
tU, Du via the following process. Traverse the tree with inorder traversal. For each node
traversed, record a D if it is missing a left child, and then record a U if it is missing a
right child. We obtain a word of length n` 1 on the alphabet tU, Du whose first letter is
D and last letter is U, and hence we may omit these letters. The resulting word of length
n´ 1 is called the canopy of the tree, and will be denoted by CanpTq.

3 A weighted extension of the Push-Gliding algorithm

In this section, we provide a sketch of a proof of Theorem 1.2 using a weighted variant of
the Push-Gliding algorithm of Préville-Ratelle and Viennot [10]. The main result in [10]
is a generalization of the m-Tamari lattices to posets of arbitrary paths. Préville-Ratelle
and Viennot were motivated by a question arising from what has come to be known as
‘rational Catalan combinatorics’.

We will define a path to be a sequence of nodes situated in the plane joined by up
steps U “ p1, 1q and down steps D “ p1,´1q. Let pu, vq be a pair of paths in the plane
starting at p0, 0q. We shall call such a pair glued if u and v end at the same point and
u stays weakly above v. An equivalent variation of the Push-Gliding algorithm in [10]
takes as input a glued pair of paths pu, vq and outputs a unique binary tree Tpu, vq. We
extend the algorithm to labeled paths and trees, keeping track of edge weights.

First let us establish some terminology used in our algorithms. Given a plane binary
tree T and a node y in T, let Ty be the subtree of T rooted at y. The right branch of T is the
sequence of nodes in T starting at the root and going right. A tail τ attached to the tree
T is a path whose first node is on the right branch of T and whose first step is a U. Let τi
denote the ith node of τ. A labeled tail of T is a tail attached to the tree T whose nodes are
labeled with positive integers. In our extended algorithm, at every step we keep track
of a labeled binary tree T and a labeled tail τ attached to T. The weight associated to an
edge, whether it is part of a tree or part of the tail, is indicated in Figure 1 based on the
orientation of the edge, and the weight of a labeled tree or tail is the product of its edge
weights.

We first introduce the operations WGlide and WPush, illustrated in Figures 2 and 3,
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and then state our main algorithm ExtendedPG. Each Glide and Push operations may
change the weight wtpT, τq :“ wtpTqwtpτq, but these changes will only involve the nodes
x, y and z indicated in Figures 2 and 3. It can be checked that before and after these
operations, the weights of the two bold edges only depend on the standardization of
the word read from their labels, stdpx`y`z`q. Furthermore, all other edge weights are
preserved. The following claim allow us to track wtpT, τq.

Claim 3.1. In Cases pP1q and pG1q of ?? 1?? 2, wtpT, τq “ wtpT1, τ1q. In Cases pP2q and pG2q,
the combined weight of the edges xz and yz in T1 is a1b2 if x` ď z` or a2b1 if x` ą z`.

Algorithm 1: WGlide

Input: pT, τ, Iq: T P T `, τ a tail attached to T, I a set of nodes in T.
// Assume τ1 ‰ rootpTq.

Output: pT1, τ1, I1q: T1 P T `, τ1 a tail attached to T1, I1 a set of nodes in T1.
begin

Let y :“ τ1, and let z :“ τ2;
Let x be the parent of y in T;
Let τ1 be obtained from τ by replacing the starting node y with x;
if stdpx`y`z`q P t123, 213, 231u then return pT, τ1, Iq // Case pG1q ;
else return pT, τ1, I Y Tyq // Case pG2q ;

end



Schur positivity and labeled binary trees 7

Algorithm 2: WPush

Input: pT, τ, Iq: T P T `, τ a labeled tail attached to T, I a set of nodes in T.
Output: pT1, τ1, I1q: T1 P T `, τ1 a labeled tail attached to T1, I1 a set of nodes in T1.
begin

Let y :“ τ1, and let z :“ τ2;
Let pz, τ3, τ4, . . . , τkq is the longest segment of τ starting at z going down, let

ρ “ pτ3, τ4, . . . , τkq, considered as a (possibly empty) tree with only right
children;

Let T2 be the tree with root z, left subtree Ty and right subtree ρ;
Let T1 be the tree obtained from T by replacing Ty with T2;
Let τ1 be the final segment of τ starting at τk;
if y has a parent x in T then

if stdpx`y`z`q P t132, 312, 321u then return pT1, τ1, Iq // Case pP1q ;
else return pT1, τ1, I Y Tyq // Case pP2q ;

else
return pT1, τ1, Iq

end
end

x
y

z G x
y

z

Figure 2: Glide Operation

x
y

z
P

x

y
z

Figure 3: Push Operation

Préville-Ratelle and Viennot have shown the original Push-Gliding algorithm involv-
ing unlabeled paths and trees is a bijection such that CanpTpu, vqq “ v. An example of
?? 3 is demonstrated in Figure 4. Uninfected tree nodes are shaded dark red, infected
tree nodes are shaded light green, and path nodes are circled. Given an input pu, vq for
?? 3, let W be the word read off from the labeling of v in order. Note that W “ inpTpu, vqq.
If I is the set of infected nodes which ?? 3 returns, let w “ w1w2 . . . w` be the subword of
W of the labels of the nodes not in I.

Claim 3.2. The set I is the disjoint union of the maximal infected subtrees of Tpu, vq. The inorder
reading words of these trees form nonadjacent intervals in W.

Assuming the above claim, then there exist subtrees T1, T2,. . . , Tm´1 of the final
output tree T such that for each i, Ti is either empty or a maximally infected subtree of
T, and such that W “ w1 inpT1qw2 ¨ ¨ ¨w`´1 inpT`´1qw`.
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Algorithm 3: ExtendedPG
Input: pu, vq: A glued pair of paths with a labeling of v.
Output: pTpu, vq, Iq: Tpu, vq P T `, a set I of “infected” nodes of Tpu, vq.
begin

if v consists of only down steps then
return pv,Hq // Consider v a tree with only right children;

end
Translate u into a word u1 on the alphabet tP ,Gu by replacing each U with a P
and each D with a G;

Let T be the longest initial segment of v consisting of D steps;
Let τ be the final segment of v starting at the rightmost child of T;
I ÐÝ H;
while τ is not a single node do

if u11 ““ P then
pT, τ, Iq ÐÝ WPushpT, τ, Iq;
Remove P from the front of u1;

else
pT, τ, Iq ÐÝ WGlidepT, τ, Iq;
Remove G from the front of u1;

end
end
return pT, Iq

end

In the example in Figure 4, w “ 213455, T1 consists of a single node labeled 1, T4 is
the green subtree consisting of three nodes labeled 342 in inorder, and T2 “ T3 “ T5 “ H.
For i such that Ti “ H, then wi and wi`1 are adjacent nodes in v. If these nodes form an
up step, let us denote this by wiwi`1 “ U and similarly for a down step. Define

wti “

$

’

’

’

’

&

’

’

’

’

%

a1rwiwi`1 “ Ds ` b2rwiwi`1 “ Us if Ti “ H and wi ď wi`1,
a2rwiwi`1 “ Ds ` b1rwiwi`1 “ Us if Ti “ H and wi ą wi`1,
a1b2 if Ti ‰ H and wi ď wi`1,
a2b1 if Ti ‰ H and wi ą wi`1.

where if P is a statement, rPs evaluates to 1 if true and 0 if false. Therefore, the sequence
of weights wti in our example is pa2b1, a1, b2, a1b2, a1q. It can be seen that xw “ x2x1x3x4x2

5
is a term in rp1,5q, and the decomposition corresponds to a term in the expansion of
pa2b1Sqpa1qpb2qpa1b2Sqpa1qrp1,5q, which is part of the sum in (1.4).

Given a labeled binary tree T, it corresponds to a unique glued pair of paths pu, vq
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where v is labeled with the word inpTq. Performing ?? 3 on this pair yields a decom-
position of T, and the right-hand side of (1.4) can be interpreted in terms of these de-
compositions, as demonstrated in our example. In fact, given a decomposition of a tree
T P T `

n into the subtrees Ti, the word w, and the weights wti, the canopy CanpTq can be
recovered from this data. If to each subtree Ti “ H we associate the U or D step given
by wti and to each Ti ‰ H we associate DCanpTiqU, then CanpTq is the sequence of steps
given by concatenating these sequences in order. From these observations, it is possible
to prove Theorem 1.3.

pu, vq “
2

1

1

3

4

3

4

2
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5
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P
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4
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2

5
5
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Figure 4: ExtendedPG performed on a glued pair pu, vq.

4 Linial arrangements and local binary search trees

We will now consider the case where a2 “ b1 “ 0. In the setting outlined in the introduc-
tion, this corresponds to considering labeled trees such that they have only weak right
ascents and weak left descents. We will refer to such labeled trees as local binary search
trees (henceforth LBS trees) after Stanley. The problem of enumerating standard LBS trees
was first considered by Postnikov [9], wherein he showed that these were equinumerous
with intransitive trees (or alternating trees). Postnikov’s interest was in enumerating the
number of regions in a well-known deformation of the Coxeter arrangement of type A,
the Linial arrangement, which, for a given n P P, is defined to be the arrangement of
hyperplanes xi ´ xj “ 1 for 1 ď i ă j ď n in Rn. We will denote this arrangement by
Ln. We will construct another subset of the set of labeled trees that is equinumerous
with LBS trees, and use it to define an action of the symmetric group on the regions of
the Linial arrangement. It is worth emphasizing that the same subset of trees has been
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considered by Bernardi [2] to solve the problem of finding a bijection between Linial
regions and LBS trees. Furthermore, recall that the analogous question of constructing
an Sn-action on the regions of the Shi arrangement is well-studied and gives rise to the
classical parking function representation. Our Sn-action shares a key feature with the
parking function representation, that of h-positivity. We describe the details next.

Corollary 1.4 in the case under consideration yields

Gn “
ÿ

TPRT n

pa1b2q
|BipTq|

pa1 ` b2q
|UnipTq|hcpTq “

ÿ

TPTn

arpTq
1 b`pTq2 hcpTq. (4.1)

where the second equality follows from the Foata-Strehl action on trees. Let rpTq and
`pTq denote the number of right edges and left edges in T, respectively. Since rpTq `
`pTq “ n ´ 1 for any T P Tn, we can set b2 “ 1. We are now ready to describe our
Sn-module whose graded Frobenius characteristic is given by Gn. A B-tree is defined to
be a standard labeled binary tree satisfying the condition that every internal node has a
label that is less than the label of its right child, provided it exists. Otherwise, it is less
than the label of its left child.

Let T B
n denote the set of B-trees on n nodes. Our arguments reveal that the number of

standard LBS trees on n nodes is equal to the cardinality of T B
n . Now note that if T P T B

n
and prepTq is broken into subwords precisely at the terminal nodes, then each subword
is increasing. This allows us to define an obvious Sn-action on T B

n . Given σ P Sn,
we relabel the node labeled i with σpiq and then sort the labels on every subword that
contributes to prepTq from before. This ensures that the resulting tree is still a B-tree.

Let CT B
n denote the vector space generated by formal linear combinations of trees in

T B
n . Then clearly CT B

n is a Sn-module graded by the number of right edges.

Theorem 4.1. The graded Frobenius characteristic of the Sn-module CT B
n is given by

ÿ

TPTn

arpTq
1 hcpTq.

Using Bernardi’s bijection between T B
n and regions of Ln, our action can be lifted to an action of

Sn on the regions of Ln.

The previous theorem gives a new formula for the number of regions in Ln as |T B
n | “

ř

TPTn

` n
cpTq

˘

, where for any composition α “ pα1, . . . , αkq ( n we let
`n

α

˘

:“ n!
α1!¨¨¨αk! .

We now turn our discussion to another notion of importance both in algebraic com-
binatorics and discrete geometry, that of γ-positivity. Postnikov [9] proved a functional
equation for the generating function for the distribution of right vertices over the set
of intransitive trees. That is, he considered the polynomial fnpxq “

ř

kě1 fnkxk where
fnk equals the number of intransitive trees on rn` 1s with k right vertices. We refer the
reader to [9] for the terminology used herein. By comparing the functional equation in
[9, Theorem 3] with the functional equation for the generating function B in the case
under consideration (where a2 “ b1 “ 0) we obtain the following result.
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Theorem 4.2. For n ě 1, the number of intransitive trees on rn` 1s with k right vertices equals
the number of standard local binary search trees on rns with k´1 right descents. In particular, the
polynomials fnpxq considered by Postnikov are γ-positive. Therefore, the sequence of coefficients
of fnpxq is unimodal.

The second half of the above theorem follows from Equation (4.1). In fact, we conjec-
ture something stronger; that for all n ě 1, all of the roots of the polynomial fnpxq are
negative real numbers. This in turn would imply that the coefficients of fnpxq form a
log-concave sequence.

5 Further avenues

We now turn our attention to the case where exactly one of the variables has been set to 0.
In this case we recover some deformation of the classical parking function representation.
This is already implicit in our functional equation, but there is one curious aspect worth
emphasizing: Our representation is not h-positive. In particular, it cannot be recovered
as a graded Frobenius characteristic of the symmetric group action on parking functions
or on labeled Dyck paths. It would be interesting to construct an Sn representation with
the right Frobenius characteristic.

Not included in this extended abstract are two more proofs of Theorem 1.2. The
first is a generating function proof using Gessel’s functional equation combined with a
consequence of the Carlitz-Scoville-Vaughan Theorem [3]. The second involves a lift of
Gessel’s functional equation for the generating function S in the Hopf algebra of non-
commutative symmetric functions defined in the seminal paper [7] and utilizes classical
techniques to cancel out negative terms via flip equivalence on trees. Indeed, we demon-
strate that all of our proofs have natural interpretations in the noncommutative setting.

There is much more to explore in terms of representation theory. In future work,
we plan to explore the representation theory behind this Schur positivity phenomena,
both from the Sn perspective and the 0-Hecke perspective. Finally, the connections to
diagonal harmonics mentioned above and work of Bergeron-Préville-Ratelle [1] remain
to be explored.
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